# PyTorchLearn **Repository Path**: gitclebeg/PyTorchLearn ## Basic Information - **Project Name**: PyTorchLearn - **Description**: PyTorch深度学习实战 - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-05-10 - **Last Updated**: 2021-05-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PyTorchLearn 目标通过本项目学习 PyTorch,实战深度学习,同时也为想通过 PyTorch 学习深度学习的朋友积累经验,欢迎一起交流 ## 一、 PyTorch 实战深度学习 位于 jupyter_script/dl_in_action 目录,将来还会增加其他学习 jupyter script 下面是具体的学习目录 一、深度学习基础 + 1.1 [PyTorch基本数值操作](https://github.com/clebeg/PyTorchLearn/blob/master/jupyter_script/dl_in_action/PyTorch%E5%9F%BA%E6%9C%AC%E6%95%B0%E5%80%BC%E6%93%8D%E4%BD%9C.ipynb) + 1.2 [PyTorch自动求梯度](https://github.com/clebeg/PyTorchLearn/blob/master/jupyter_script/dl_in_action/PyTorch%E8%87%AA%E5%8A%A8%E6%B1%82%E6%A2%AF%E5%BA%A6.ipynb) + 1.3 [线性回归](https://github.com/clebeg/PyTorchLearn/blob/master/jupyter_script/dl_in_action/%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92.ipynb) + 1.4 [逻辑回归](https://github.com/clebeg/PyTorchLearn/blob/master/jupyter_script/dl_in_action/逻辑回归.ipynb) + 1.5 [softmax回归](https://github.com/clebeg/PyTorchLearn/blob/master/jupyter_script/dl_in_action/softmax回归.ipynb) + 1.6 [多层感知机](https://github.com/clebeg/PyTorchLearn/blob/master/jupyter_script/dl_in_action/多层感知机.ipynb) + 1.7 [过拟合与欠拟合](https://github.com/clebeg/PyTorchLearn/blob/master/jupyter_script/dl_in_action/过拟合与欠拟合.ipynb) + 1.8 [过拟合解决方法](https://github.com/clebeg/PyTorchLearn/blob/master/jupyter_script/dl_in_action/过拟合解决方法.ipynb) ## 二、拿来即用模型 位于 src 目录中 ### 2.1 项目全局配置 ```src.config.constant``` + DATA_ROOT_PATH: 训练数据集下载目录 数据将下载到对应的本地目录中,这部分数据不会上传到 git ### 2.2 使用的数据集 将下面数据集下载到 DATA_ROOT_PATH 目录中 + cifar-10-python.tar.gz: 经典图片分类数据集,总共10个类别,下载地址:https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz,官方网站:https://www.cs.toronto.edu/~kriz/cifar.html + THUCNews_model.zip: 清华大学自然语言处理实验室提供的中文语料,官网地址:http://thuctc.thunlp.org/#中文文本分类数据集THUCNews,需要提供用户名、公司名和邮箱即可下载,总共有14个类别,并提供了实验室的测试效果