# Qwen2.5-32B-Instruct-FineTune **Repository Path**: hf-models/Qwen2.5-32B-Instruct-FineTune ## Basic Information - **Project Name**: Qwen2.5-32B-Instruct-FineTune - **Description**: Mirror of https://huggingface.co/chengang12345/Qwen2.5-32B-Instruct-FineTune - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-10-02 - **Last Updated**: 2025-10-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README --- license: apache-2.0 --- 针对Qwen2.5-32B-Intruct,采用 SFT方式做的微调,尝试提高在医学方向的能力。 Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents. from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "chengang12345/Qwen2.5-3B-Instruct-FineTunee" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]