# visualization-vgg16 **Repository Path**: xtudbxk/visualization-vgg16 ## Basic Information - **Project Name**: visualization-vgg16 - **Description**: 使用 visualizing and understanding convolutional networks 论文里提到的 deconv network 对 vgg16 进行可视化 - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2017-07-29 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README lization-vgg16 使用 [visualizing and understanding convolutional networks](https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53) 论文里提到的 deconv network 对 [vgg16](http://ethereon.github.io/netscope/#/preset/vgg-16) 进行可视化 note: 1. the base vgg16 construct source code is from [https://github.com/machrisaa/tensorflow-vgg](https://github.com/machrisaa/tensorflow-vgg) 2. before you start the script file, you should do somethings following: >1. download the vgg16.npy from [http://pan.baidu.com/s/1jHS95Ym](http://pan.baidu.com/s/1jHS95Ym) for china and [https://mega.nz/#!YU1FWJrA!O1ywiCS2IiOlUCtCpI6HTJOMrneN-Qdv3ywQP5poecM](https://mega.nz/#!YU1FWJrA!O1ywiCS2IiOlUCtCpI6HTJOMrneN-Qdv3ywQP5poecM) for other countries. >2. mkdir a input dir, and put a image named "test.jpg" for the input image. >3. mkdir a output dir for the output images. 3. to start the script, you just to type `python visiualization_vgg16.py which_gpu_device_to_use`. 4. if you have no gpus, just comment the `os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[1]` in the script. some examples: input image: ![test.jpg](input/test.jpg) visualization results: ![pool1_6.png](output/pool1_6.png) ![pool1_11.png](output/pool1_11.png) ![pool2_105.png](output/pool2_105.png) ![pool2_127.png](output/pool2_127.png)